## SVM 和 BP 检测滨海湿地土壤有机质

张 森1,卢 霞1\*,聂格格2,李昱蓉1,邵亚婷1,田燕芹1,范礼强1,张钰娟1

1. 江苏海洋大学测绘与海洋信息学院, 江苏 连云港 222005

2. 河南财经政法大学资源与环境学院,河南郑州 450046

摘 要 近年来,虽然随着高光谱技术的出现可以快速获取土壤中的养分含量,但不同的土壤类型对估算 的精度会有很大的差异。滨海湿地土壤类型受海洋环境影响较大,其高光谱反射率与内陆土壤类型的表现 会有所不同,也就造成了同样的估算模型在反演滨海湿地土壤的养分含量时,反演精度的降低,随着近年来 海洋资源的开发与滨海湿地生态恢复工作的不断推进,探索一种合适的估算模型来快速准确的获取土壤中 的养分含量变得更加紧迫。该研究旨在验证利用可见-近红外高光谱反射率构建非线性模型来反演滨海湿地 土壤类型中有机质(soil organic matter, SOM)含量的可行性。以江苏省盐城大丰麋鹿国家级自然保护区的第 三核心区土壤作为研究对象,将土壤样本的光谱反射率进行5点 Savitzky-Golav(S-G)平滑滤波处理,再进 行一阶微分 R'、倒数的一阶微分(1/R)'、倒数的二阶微分(1/R)''、对数的一阶微分(lgR)'四种微分变换后,应用相关系数和显著性水平(p<0.01)提取土壤有机质含量的敏感波段,利用台湾大学林智仁教授开发的 MATLAB软件中的 LIBSVM 工具包构建 SVM(support vector machine)支持向量机估算模型,并利用 MATLAB2018b 软件中自带的 BP(back propagation)反向传播神经网络构建估算模型,最后利用决定系数 R<sup>2</sup> 和均方根误差 RMSE 进行模型的预测精度验证。结果表明:原始光谱通过 5 点 S-G 平滑滤波、微分变换 与相关系数法可以较好的提取出有效波段,其中基于(1/R)'光谱变换提取的滨海湿地土壤有机质特征波段 为 498~501, 1 180~1 182, 1 946, 1 947 和 2 323~2 326 nm; 对比发现 SVM 的估算精度优于 BP 神经网 络;利用光谱的(1/R)<sup>/</sup>微分形式构建的 SVM 模型估算滨海湿地土壤 SOM 含量的精度最高,决定系数 R<sup>2</sup> 与 RMSE 分别为 0.93 和 0.23,并目均通过了 p<0.01 的显著性检验。因此利用高光谱构建 SVM 非线性模型 来快速估算滨海湿地土壤中的养分含量具有一定的可行性。

关键词 滨海湿地; S-G 滤波; SVM 支持向量机; BP 神经网络 中图分类号: O433.5 文献标识码: A **DOI**: 10. 3964/j. issn. 1000-0593(2020)02-0556-06

## 引 言

土壤中的有机质是湿地土壤成分中的重要组成部分,是 判别湿地中土壤肥力大小的重要指标<sup>[1]</sup>。因此快速测定湿地 土壤中有机质的含量,对于维护湿地生态平衡,可持续发展 具有重要的意义。传统检验土壤中养分含量的方法主要是基 于化学分析,费时耗力,不能满足快速、低成本的现实需求, 而光谱分析正好弥补了传统式化学分析方法的不足,为估算 土壤中的各种养分含量提供了有力的技术支持。 目前利用光谱分析来估算土壤中养分含量的研究主要分 为三个步骤:(1)将测得的原始光谱数据进行光谱预处理, 以消除或减弱原有光谱信息中的噪声,放大有用信息,比较 常见的光谱预处理方法有连续投影法(SPA)<sup>[2-3]</sup>、Savitzky-Golay 卷积平滑算法<sup>[4]</sup>、微分算法<sup>[5]</sup>、指数变换<sup>[6]</sup>等;(2)将 预处理后的光谱提取特征波段,常用的提取方法主要有相关 系数法<sup>[7]</sup>、逐步回归法、遗传算法<sup>[8]</sup>等;(3)将特征波段的 光谱数据和对应的土壤理化数据进行建模,常用的建模方法 主要分为线性与非线性建模,线性建模主要有线性回归<sup>[9]</sup>、 偏最小二乘法回归<sup>[10]</sup>等;非线性建模主要有 BP 神经网

收稿日期: 2018-12-08, 修订日期: 2019-04-22

基金项目:国家自然科学基金项目(41506106),海岸带地理环境监测国家测绘地理信息局重点实验室开放基金项目(GE-2017-003),2019年 江苏省研究生实践创新计划项目(SJCX19\_0972),江苏省海洋技术品牌专业建设项目(PPZY2015B116),江苏高校优势学科建设 工程项目资助

**作者简介:**张 森,1995年生,江苏海洋大学测绘与海洋信息学院硕士研究生 e-mail: zhangsen. henan@foxmail. com \* 通讯联系人 e-mail: luxia1210@163. com

络<sup>[11]</sup>、最小二乘支持向量机(LS-SVM)<sup>[12]</sup>等。已有部分研究 发现利用非线性模型来估算土壤养分含量的精度要高于线性 模型,如 Bao 等<sup>[13]</sup>在综合分析了不同地貌土壤有机质含量 与相应光谱反射率之间的关系的基础上,对 PLS 与 PLS-SVM两种建模方法预测矿区土壤有机质含量的准确度做了 比较,结果表明 PLS-SVM 比 PLS 更能准确的预测。章海亮 等将光谱进行平滑、标准归一化、多元散射校正和一阶导数 处理后,用偏最小二乘和最小二乘支持向量机建立校正模 型,最后比较得出连续投影可见/短波近红外光谱利用最小 二乘支持向量机建模是一种精确的土壤有机质和速效钾的测 定方法。然而针对滨海湿地土壤类型的非线性高光谱估算研 究相对较少[14]。滨海湿地作为一种陆地与水域之间的生态 系统,受海洋环境的影响较大,表现出独特的土壤特性。因 此本文以江苏省大丰麋鹿野牧区滨海湿地土壤为研究对象, 利用非线性模型 SVM 支持向量机的建模方法并对比 BP 神 经网络算法来估算滨海湿地土壤有机质的含量,以此来验证 滨海湿地土壤有机质含量的非线性高光谱估算模型的可行 性。

#### 实验部分 1

## 1.1 研究区概况

江苏省大丰麋鹿国家级自然保护区坐落于中国四大湿地 (南黄海湿地、青藏高原湿地、东北三江平原湿地、鄱阳湖湿 地)之一的南黄海湿地上,核心区面积4万亩,是世界上最大 的麋鹿自然保护区(32°59′-33°03′N, 120°47′-120°53′E), 该区域主要为暖温带大陆季风性气候,海洋性和季风性特征 显著[15]; 地势平坦, 为平原盐渍沼泽, 黄河口沉积物成土母 质;第三核心区植被茂密,分布着互花米草、碱蓬、芦苇等 植被群落,土壤类型主要为潮盐土与草甸滨海盐土亚类,表 层土壤含盐量在 0.04%~1.13%之间[16]。

## 1.2 样本采集

依据研究区土壤类型和植被群落分布特征,采用规则网 格法(1000 m×1000 m)划分研究区,采样方案如图1所示。 每个网格采用对角线采样法采集 0~20 cm 的表层土壤, 之后 均匀混合,作为该网格的土壤样本,共采集34个土壤样本。





将所采集的土壤样品在室温条件下自然风干,去除石 块、残根等杂物后研磨、过80目筛子,保存,用于待测土壤 SOM 和室内反射光谱。土壤 SOM 含量测定是用水合热重铬 酸钾氧化-比色法; 土壤 pH 范围为 8.02~8.94 之间, 平均 值在 8.4,属于碱性土壤,表1为 34 个采样点获得的土壤样 品 SOM 的统计结果。

## 表1 研究区土壤样本 SOM 含量统计

#### Table 1 SOM statistical results of soil samples in the study area

| 养分项目                    | 最小值 | 最大值  | 标准差 | 均值   | 变异系数/% |
|-------------------------|-----|------|-----|------|--------|
| $SOM/(g \cdot kg^{-1})$ | 7   | 45.3 | 8.3 | 13.2 | 63.1   |

## 1.3 土壤反射光谱测定

土壤反射光谱利用美国 Spectra Vista 公司生产的 SVC HR-1024I光谱仪进行测定。波段范围为 350~2 500 nm, 其 中在 350~1 000 nm 光谱分辨率≤3.0 nm, 光谱间隔≤1.5 nm; 1 000~1 900 nm 光谱分辨率≤9.5 nm, 光谱间隔≤3.6 nm: 1 900~2 500 nm 光谱分辨率≤9.5 nm, 光谱间隔≤2.5 nm。利用 BRDF 系统建立土壤测试环境:探头垂直向下,视 场角4°,距离土壤样品(样品盒的直径为9 cm,高度为2 cm 的圆形玻璃器皿)表面约为1m,室内照明光源,为50W的 卤素灯, 天顶角 45°。测定时, 将装有土壤样品的玻璃皿放在 黑色阻尼布上,保持土壤表面平整,每个土壤样本测量5次, 取平均值作为土壤样本反射光谱;测量期间,每隔15 min测 定白板反射光谱以便校正。

## 1.4 分析方法

光谱预处理主要采用 Savitzky-Golay(S-G)卷积平滑滤波 与微分算法。S-G 卷积平滑滤波原理主要是采用最小二乘拟 合系数来建立滤波函数,然后对每一个窗口范围内的波长数 据进行多项式最小二乘拟合,其拟合的表达式可表示为

$$\hat{X}_i = a_0 + a_1 \lambda_i + a_2 \lambda_i^2 \tag{1}$$

其中  $\hat{X}_i$  是 S-G 平滑算法建立二次拟合后得到的拟合值,  $a_0$ , a1 和 a2 是方程式的系数。为了研究不同的微分形式对建模 精度的影响,选取一阶微分、倒数的一阶微分、倒数的二阶 微分以及对数的一阶微分几种常见的微分变换形式作对比, 用 R 代表 S-G 滤波后的光谱, R'代表光谱的一阶微分形式, (1/R)<sup>1</sup>代表光谱的倒数的一阶微分形式,(1/R)<sup>1</sup>代表光谱的 倒数的二阶微分形式,「lg(R)]'代表光谱的对数的一阶微分 形式,其计算方法如式(2)-式(5)

$$R'(\lambda_i) = \left[ R(\lambda_{i+1}) - R(\lambda_{i-1}) \right] / 2\Delta \lambda$$
(2)

2 1

$$(1/R)'(\lambda_{i}) = [(1/R)(\lambda_{i+1}) - (1/R)(\lambda_{i-1})]/(2\Delta\lambda) \quad (3)$$
$$(1/R)''(\lambda_{i}) = \frac{(1/R)'(\lambda_{i+1}) - (1/R)'(\lambda_{i-1})}{2\lambda_{i}}$$

$$= \frac{(1/R)(\lambda_{i+1}) - 2(1/R)(\lambda_i) + (1/R)'(\lambda_{i-1})}{\Delta \lambda^2}$$
(4)

$$\left[\lg(R)\right]'(\lambda_{i}) = \left\{\left[\lg(R)\right](\lambda_{i+1}) - \left[\lg(R)\right](\lambda_{i-1})\right\}/2\Delta\lambda$$
(5)

式中 $\lambda_i$  为各波段的波长, $\Delta\lambda$  表示波长 $\lambda_{i+1}$ 到 $\lambda_i$ 的间隔<sup>[17]</sup>。 特征波段的选取是利用皮尔逊相关系数法以及相关系数的显 著性检验。为研究不同的非线性建模方法在利用高光谱反射 率预测滨海湿地土壤养分含量上的精度差异,选取支持向量机(support vector machine, SVM)与 BP 神经网络两种非线性模型作对比分析。

SVM 建模采用台湾大学林智仁教授开发的 LIBSVM 工 具包, BP 神经网络利用 MATLAB2018b 软件中自带的工具 包通过编程实现。模型验证主要使用决定系数 R<sup>2</sup> 与均方根 误差 RMSE,其中决定系数是相关系数的平方,是一个能够 直观判断拟合优势的指标,决定系数越接近于 1,说明实测 值与预测值的拟合程度越高,模型的精度也就越佳;均方根 误差是观测值与真值偏差的平方和观测次数比值的平方根, 它对模型的建模能力和预测能力都能做出非常有效的评价, RMSE 的值越小,模型的反演能力越强。

## 2 结果与讨论

#### 2.1 滨海湿地土壤光谱特性

由于原始光谱在 350~400 之间存在很多噪声,因此选 取 400~2 400 nm 波段做分析。在 MATLAB 2014b 软件中 利用 Savitzky-Golay(S-G)滤波器将滨海湿地土壤的原始光谱 进行5点平滑滤波处理,处理后的光谱反射率曲线如图2所 示,可以看出经过自然风干的34个土壤样本测得的光谱曲 线走势具有很大的相似性,但是由于每个土壤样本中的有机 质含量等土壤理化性质的不同, 所测得的土壤样本光谱反射 率在波峰、波谷、反射率强弱上还是有所不同,这与章海亮 等的研究结果相同。总体波段范围内的反射率介于 0.1~0.7 之间;同时可以清楚的发现在1400和1900nm两个波段附 近有两个明显的吸收谷,在700和1000 nm两个波段附近有 两个比较弱的吸收谷,这主要是由土壤中的水分子振动的倍 频与合频所产生的;在1950~2400 nm 波段内光谱曲线呈 现波浪式状态,主要是由于土壤样本中的少量水分与空气中 的水分吸收产生的,这与研究土壤光谱反射率特征的相关报 道一致[2-3]。总体上看土壤反射率随着波长的增加而不断增 大,其中在400~600 nm 波段范围上升速度比较明显,600 ~800 nm 波段之间呈现中等缓慢上升,800 nm 以后波谱反 射率上升比较平缓。



## 2.2 土壤 SOM 含量的特征波段提取

将 S-G 滤波后的光谱反射率进行四种微分变换,并与土 壤实测的 34 个土壤样本组的 SOM 含量做相关性与显著性 分析,如图 3 所示,其中(a)图为一阶微分变换后的相关系 数,(b)图为倒数的一阶微分后的相关系数,(c)图为倒数的 二阶微分后的相关系数,(d)图为对数的一阶微分后的相关 系数。从图3可以发现四种光谱变换形式不同程度上改变了 原始光谱与土壤有机质含量的相关系数,并且将有关土壤有 机质的敏感波段处的反射率进一步放大,同时可以发现在 700,1000,1400和1900 nm 几处光谱吸收谷附近的相关 性都比较低,这说明土壤受水分影响会降低光谱反射率与土 壤有机质含量的相关系数。



挑选出置信水平 p < 0.01的波长作为特征波段,筛选结 果如表 2 所示。由表 2 可知:每一种微分变换后所提取出的 特征波段的数量不同,并且每一种微分变换后与对应的土壤 SOM 养分含量相关性也不同。相关性最高的是(1/R)'光谱 变换形式,所提取到的特征波段数有 13 个,分别为 498~ 501,1 180~1 182,1 946,1 947 和 2 323~2 326 nm,其中 在 2 324 nm 波段附近呈现正相关性,在 500 nm 波段附近主 要呈现负相关性。

但是提取到的敏感波段与章海亮等利用连续投影法所提 取的水稻土、砖红土和黄土有机质敏感波段 362,392,422, 437,537,652,702 和 1 062 nm 有所不同。差异的原因可能 是由于研究区土壤类型的不同,前人研究结果发现大丰麋鹿 国家级自然保护区第三核心区的土壤类型主要为潮滩盐土和 草甸海滨盐土,这两种土壤类型通常含盐量在 0.8%~2.0% 之间,最高甚至可达4%的含盐量<sup>[18]</sup>,而土壤盐分含量会影 响土壤的反射率,也会影响到土壤中有机质的光谱信息<sup>[6]</sup>。

表 2 土壤 SOM 含量的特征波段筛选 Table 2 Sensitive band deletion of soil SOM content

| 光谱<br>变换   | 最大相关        |           | 最小相关        |          | 赤日       |                                                            |
|------------|-------------|-----------|-------------|----------|----------|------------------------------------------------------------|
|            | 对应波<br>段/nm | 相关<br>系数  | 对应波<br>段/nm | 相关<br>系数 | 受重<br>个数 | 敏感波段/nm<br>(p<0.01)                                        |
| R'         | 855         | 0.468 * * | 2 213       | -0.402*  | 2        | 855,854                                                    |
| (1/R)'     | 2 324       | 0.479**   | 500         | -0.484*  | * 13     | 498~501, 1 180~<br>1 182, 1 946,<br>1 947, 2 323~<br>2 326 |
| $(\lg R)'$ | 855         | 0.441 * * | 534         | -0.465*  | * 3      | 533, 534, 855                                              |
| (1/R)''    | 900         | 0.477 * * | 1952        | -0.425*  | 7        | 874, 899, 900,<br>901, 2 319, 2 320,<br>2 346              |

Note: \* p < 0.05, \* \* p < 0.01

#### 2.3 模型的构建与精度验证

2.3.1 基于 SVM 支持向量机的土壤有机质含量高光谱估 算模型

训练集与测试集的设置是随机选取 34 个土壤样本中 24 个光谱变换后筛选出来的特征波段数据和对应的土壤 SOM 含量值作为训练集的输入与输出,剩下的 10 个样本作为测 试集的输入与输出。并利用 MATLAB 中的 mapminmax 函 数将训练集与测试集的数据进行归一化处理,使其映射到 [0,1]区间内。在 SVM 的创建与训练中,"-t"核函数类型 选择为 RBF 核函数,利用网格搜索交叉验证的方法遍历 c 与 g 的值来获取最佳 c 与 g 参数,"-s"即 SVM 类型选择为 eSVR 类型,"-p"设置 eSVR 类型中损失函数 p 的值为 0.01。最后利用 svmpredict 函数和已经训练好的模型预测出 剩余 10 个样本的有效值,并将预测值进行反归一化处理以 便更好的还原真实值。最后构建的模型验证精度如表 3 所 示。由表 3 可知:土壤样本反射率(1/R)'变换形式估算土壤 有机质含量的精度最高,预测决定系数  $R^2$  为 0.93,预测均 方根误差为 0.23。

表 3 SVM 建模方法得到的土壤 SOM 含量精度 Table 3 Soil SOM content obtained by SVM modeling

| 变换形式       | 建模       | 精度   | 验证精度     |      |  |
|------------|----------|------|----------|------|--|
|            | $R^2$    | RMSE | $R^2$    | RMSE |  |
| R'         | 0.74 * * | 0.39 | 0.72**   | 0.7  |  |
| (1/R)'     | 0.68**   | 0.28 | 0.93**   | 0.23 |  |
| $(\lg R)'$ | 0.89**   | 0.18 | 0.7**    | 0.34 |  |
| (1/R)''    | 0.84 * * | 0.32 | 0.84 * * | 0.24 |  |

Note: \* p<0.05, \* \* p<0.01

# 2.3.2 基于 BP 神经网络的土壤有机质含量高光谱估算模型

BP 神经网络的建模形式与 SVM 类似,都需要设置训练 集与测试集,为方便观察对比两种建模精度,选取与 SVM 建模一样的测试集与训练集;同时与 SVM 建模相同,将训 练集与测试集都进行归一化处理将其映射到[0.1]区间内; 在创建神经网络时,训练方式选择梯度下降方法,迭代次数 设置为1000次,训练目标设置为le-30即训练的均方根误差 小于le-30,神经元设置为10个,学习率设置为0.01;之后 的仿真测试与反归一化和 SVM 建模相同。最后构建的模型 精度如表4所示。由表4可知:土壤样本反射率(1/R)'形式 估算土壤有机质含量的精度较高,其中预测决定系数 R<sup>2</sup> 为 0.87,预测均方根误差为0.33。

表 4 用 BP 神经网络建模方法得到的土壤 SOM 含量精度 Table 4 Soil SOM content obtained by BP

| 变换形式       | 建模       | 精度   | 验证精度   |      |  |
|------------|----------|------|--------|------|--|
|            | $R^2$    | RMSE | $R^2$  | RMSE |  |
| R'         | 0.89**   | 0.26 | 0.70** | 0.24 |  |
| (1/R)'     | 0.83**   | 0.09 | 0.87** | 0.33 |  |
| $(\lg R)'$ | 0.95 * * | 0.02 | 0.63** | 0.44 |  |
| (1/R)''    | 0.66*    | 0.06 | 0.77** | 0.18 |  |

Note: \* p < 0.05, \* \* p < 0.01

2.3.3 SVM和 BP检测土壤有机质含量的精度对比

图 4 为 SVM 与 BP 神经网络两种非线性建模方法在估 算滨海湿地土壤有机质含量的精度对比,横坐标代表四种不 同的光谱变换形式,纵坐标左侧代表决定系数 R<sup>2</sup> 的值,纵 坐标右侧代表 RMSE 的值。



Fig. 4 Comparison of modeling accuracy of soil SOM content

由图 4 可知:基于决定系数 R<sup>2</sup> 和均方根误差 RMSE 评价指标,SVM 支持向量机估算滨海湿地土壤有机质含量精度明显优于 BP 神经网络。为了更加直观的看出 SVM 模型的预测效果,用光谱变换(1/R)′构建 SVM 模型所预测的滨海湿地土壤有机质含量与实测的含量进行对比,如图 5 所示,横坐标为实测值,纵坐标为预测值。由图 5 可以看出SVM 预测土壤有机质含量精度较好,均匀分布于 y=x 直线附近。

由以上分析结果表明:通过 SVM 支持向量机检测土壤 有机质的精度要优于 BP 神经网络,这与蒋璐璐等<sup>[19]</sup>通过最 小二乘支持向量机与 BP 神经网络构建的浙江省衢州红壤和 海宁青紫泥中氮磷钾含量的估算模型结果一致。通过光谱的 (1/*R*)<sup>'</sup>变换形式构建的 SVM 估算模型在预测滨海湿地土壤 有机质的精度最高,其中预测决定系数 *R*<sup>2</sup> 为 0.93,均方根 误差 RMSE 为 0.23,这比刘雪梅<sup>[20]</sup> 通过一阶微分结合最小 二乘回归方法构建的江西省遂川县枚江乡土壤有机质含量的 预测精度(*R<sup>2</sup>* 为 0.825 5)要高。这说明基于高光谱反射率的 微分变换形式所构建的 SVM 模型在预测滨海湿地中土壤有 机质含量具有一定的可行性,但该模型是否可以预测其他地 区的滨海湿地土壤中有机质的含量还需进一步的验证。



Fig. 5 The prediction of soil SOM content

## 4 结 论

滨海湿地采集的 34 个土壤样本在室内测得的原始光谱 进行 S-G 滤波处理与 R',(1/R)',(1/R)",(1gR)'四种微分 变换,利用相关系数法提取土壤 SOM 含量在高光谱遥感中 的特征波段,并通过 SVM 支持向量机和 BP 神经网络估算 滨海湿地土壤中 SOM 含量。得出以下结论:

(1)SVM 支持向量机检测滨海湿地土壤有机质含量的精 度明显优于 BP 神经网络模型,利用可见-近红外高光谱构建 的 SVM 非线性模型来快速估算滨海湿地土壤中的养分含量 具有一定的可行性。

(2)土壤有机质与光谱反射率倒数的一阶微分存在较高的相关性,显著相关(*p*<0.01)的波段数为13个,敏感波段为498~501,1180~1182,1946,1947和2323~2326 nm。

(3) 基于 SVM 构建土壤有机质的估算模型精度最高,预 测决定系数 R<sup>2</sup> 为 0.93,均方根误差 RMSE 为 0.23。

(4)光谱数据的预处理与变换形式以及模型的构建方式 和样本的数量都是影响最终预测精度的重要因子,本实验由 于样本数量有限并不能很好的展示样本大小对模型估算精度 的影响程度,因此未来应深入探讨土壤样本数量对估算模型的精度和均方根误差的影响程度。

#### References

- [1] Gabriel Y K Moinet, John E Hunt, Miko U F Kirschbaum, et al. Soil Biology and Biochemistry, 2018, 116: 333.
- [2] Vohland M, Emmerling C. Soil Science, 2011, 62(4): 598.
- [3] Wu Di, Shi Hui, Wang Songjing, et al. Analytica Chimica Acta, 2012, 726(0): 57.
- [4] Radim Vašát, Radka Kodešová, Aleš Klement, et al. Geoderma, 2017, 298, 46.
- [5] JIANG Ye-lin, WANG Rang-hui, LI Yan, et al(蒋烨林,王让会,李 焱,等). Chinese Journal of Eco-Agriculture(中国生态农业学报), 2016, 24(11): 1555.
- [6] GAO Deng-zhou, ZENG Cong-sheng, ZHANG Wen-long, et al(高灯州,曾从盛,章文龙,等). Chinese Journal of Ecology(生态学杂志), 2016, 35(4): 952.
- [7] He Yong, Xiao Shupei, Nie Pengcheng, et al. Sensors, 2017, 17(9): 2045.
- [8] ZOU Xiao-bo, ZHAO Jie-wen(邹小波,赵杰文). Acta Optica Sinica(光学学报), 2007, 27(7): 1316.
- [9] GAO Deng-zhou, CHEN Gui-xiang, ZHANG Wen-long, et al(高灯州,陈桂香,章文龙,等). Research and Exploration in Laboratory (实验室研究与探索), 2014, 33(6): 19.
- [10] Gerighausen H, Menz G, Kaufmann H, et al. Applied & Environmental Soil Science, 2012, 143: 487.
- [11] Tian Yongchao, Zhang Juanjuan, YAO Xiao, et al. Geoderm, 2013, 202-203: 161.
- [12] Kennedy Were, Dieu Tien Bui, Øystein B Dick, et al. Ecological indicators, 2015, 52: 394.
- [13] Bao Nisha, Wu Lixin, Ye Baoying, et al. Geoderma, 2017, 288: 47.
- [14] Wang Xiaoping, Zhang Fei, Kung Hsiang-te, et al. Remote Sensing of Environment, 2018, 218(1): 104.
- [15] LU Xia, LIN Ya-li, WU Ya-nan, et al(卢 廣, 林雅丽, 吴亚楠, 等). Transactions of Oceanology and Limnology(海洋湖沼通报), 2018, 4: 74.
- [16] LIU Jin-gen, XUE Jian-hui, WANG Lei, et al(刘金根,薛建辉,王 磊,等). Chinese Journal of Ecology(生态学杂志), 2011, 30(8):
   1793.
- [17] QIAO Juan-feng, XIONG Hei-gang, WANG Xiao-ping, et al(乔娟峰,熊黑纲,王小平,等). Agricultural Research in the Arid Areas(干 旱地区农业研究), 2018, 36(5): 207.
- [18] DING Ning-ning, WANG Bao-song, LIANG Zhen-hai, et al(丁宁宁, 王保松, 梁珍海, 等). Soils(土壤), 2011, 43(3): 487.
- [19] JIANG Lu-lu, ZHANG Yu, WANG Yan-yan, et al(蒋璐璐,张 瑜,王艳艳,等). Journal of Zhejiang University(浙江大学学报),

2010, 36(4): 445.

[20] LIU Xue-mei(刘雪梅). Journal of Chinese Agricultural Mechanization(中国农机化学报), 2013, 34(2): 202.

# Estimation of Soil Organic Matter in Coastal Wetlands by SVM and BP Based on Hyperspectral Remote Sensing

ZHANG Sen<sup>1</sup>, LU Xia<sup>1\*</sup>, NIE Ge-ge<sup>2</sup>, LI Yu-rong<sup>1</sup>, SHAO Ya-ting<sup>1</sup>, TIAN Yan-qin<sup>1</sup>, FAN Li-qiang<sup>1</sup>, ZHANG Yu-juan<sup>1</sup>

1. School of Geomatics and Marine Information, Jiangsu Ocean University, Lianyungang 222005, China

2. School of Resources and Environment, Henan University of Economics and Law, Zhengzhou 450046, China

Abstract In recent years, although the nutrient content in the soil can be quickly obtained with the emergence of hyperspectral technology, but different soil types have great differences in the accuracy of estimation. The soil type of coastal wetland is greatly affected by the marine environment, and its hyperspectral reflectance and inland soil type will be different. This will reduce the precision in the same estimation model when inverting the nutrient content of coastal wetland soil types. With the development of marine resources and the ecological restoration of coastal wetlands in recent years, it is urgent to explore a suitable estimation model to quickly and accurately obtain nutrient content in soil. This study aimed to verify the use of visible-near infrared hyperspectral reflectivity to construct a nonlinear model so as to invert the feasibility of organic matter (SOM) in coastal wetland soils. The topsoil in the third core area of Dafeng Elk National Nature Reserve in Yancheng, Jiangsu province was taken as the investigated object. The sensitive bands corresponding to Soil Organic Matter (SOM) content were retrieved based on correlation of soil samples. The estimation models of SOM by Support Vector Machine (SVM) and BP neural network were determined, and the prediction accuracy of the model was verified by using the decision coefficient R2 and the root mean square error RMSE. The research results indicated that the effective bands can be identified by S-G filtering, differential transformation and correlation coefficient method based on the original spectra of soil samples. The characteristic bands of SOM based on transformations (1/R)' were 498~501, 1 180~1 182, 1 946, 1 947, 2 323~2 326 nm. Estimation accuracy of SVM was better than that of BP neural network for SOM in Yancheng coastal wetland. The estimation model of SOM by SVM based on (1/R)' spectra had the highest precision, with the determination coefficients  $(R^2)$  and root mean square error (RMSE) of 0.93 and 0.23. Therefore, it is suitable to use hyperspectral remote sensing to quickly estimate the nutrient contents of topsoil in coastal wetland.

Keywords Coastal wetland; S-G filtering; Support vector machine; BP neural network

(Received Dec. 8, 2018; accepted Apr. 22, 2019)

\* Corresponding author